Opinion Blog

Classroom Q&A

With Larry Ferlazzo

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to lferlazzo@epe.org. Read more from this blog.

Science Opinion

Ten Culturally Responsive Teaching Strategies for the Science Classroom

By Larry Ferlazzo — February 14, 2021 13 min read
thecontextkelly
  • Save to favorites
  • Print

The new question-of-the-week is:

What are specific ways educators can make teaching science more culturally responsive?

When we talk about making school culturally responsive, science is not usually the first subject that comes to mind. But that doesn’t mean it can’t be done.

Today’s column will explore ways to make it happen.

Teachers Autumn Kelly, Tara C. Dale, Mandi S. White, and Anthony Nesbit share their suggestions. Autumn and Tara were also guests on my 10-minute BAM! Radio Show. You can also find a list of, and links to, previous shows here.

You might also be interested in The Best Resources About “Culturally Responsive Teaching” & “Culturally Sustaining Pedagogy.”

Making science ‘relatable’

A Washingtonian, a happy member of the D.C. public school system, with graduate degrees from the Harvard School of Education and Johns Hopkins University, Autumn Kelly’s digital island of resources can be found at her website:

Science starts with a journey of discovery. Connecting culturally diverse students to a body of knowledge that can promote safe interactions with the natural environment, good health, and a chemical and biological understanding of the world around them will enhance their life outcomes. Students from diverse backgrounds, particularly Black students along with other racial minorities, are underrepresented and poorly served within the scientific community. As teachers, we can break this cycle by promoting and incorporating culturally inclusive methods as we present science content.

Use Stories and Personifications of Diverse People and Life Experiences

The context of a story can be a culturally rich backdrop to present scientific problems and concepts. Using a historical, current, or fictional character that shares the same ethnicity of life experience of your students will enhance their willingness to engage in science instruction. Invite local professionals in the scientific field from local hospitals, laboratories, or pharmacies to share about their journey in the sciences as a minority student.

Connect to the Community

Classroom research and problem solving in the sciences should focus on culturally relevant elements in the students’ local or broader community. For example: If there is a specific disease such as high blood pressure or diabetes that disproportionately affects individuals of certain ethnic or racial backgrounds, use these elements in examples and research topics for students to learn about the principles of science. Have students interview or watch YouTube footage of individuals facing health or science problems that affect their communities. Have students understand disease and treatment statistics from local hospitals and clinics to connect them to ways that science can solve problems in the local world around them.

Break Down Knowledge Barriers: Create Safe Places for Background Questions

Many students have not had the benefit of early formal or informal exposure to the language, vocabulary, and methodology used in the scientific fields of chemistry or biology. When these students attempt to learn concepts and ideas in these areas of science, they are hesitant to try because they lack an understanding of the foundational principals within these areas of study.

One way to support these students is to create a “safe space” in the classroom where students can ask anonymous questions about vocabulary and terms during course instruction. This can be done virtually through an email address sent to the teacher where students can send questions they need to ask, a phone number to the teacher where students can text questions, or done on a whiteboard or Post-it note area in the classroom teaching space. The teacher can designate a time during the class period to address these areas of academic need prior to students working on class projects or assignments. This support creates an authentic dialogue of understanding between the student learner and the instructor.

Connect to Personal Experience

Help students connect their life experiences to learning science. Question students to find out if they know anyone with a disease or health experience that is being studied in the science class. Teachers can share first-person accounts from YouTube or other sources of culturally diverse people who might be facing science-based challenges. Empowered by science instruction using these strategies, students can connect new knowledge to personal experiences.

Making science a relatable feature in the lives of culturally diverse students involves integrating culturally relevant elements into daily instruction.

helpstudentskelly

Looking ‘through the lens of assets’

Tara C. Dale is currently a high school science teacher and instructional coach. Mandi S. White works as an academic and behavior specialist who was a classroom teacher for nine years prior. They are co-authors of the book, The Science Teacher’s Toolbox:

Culturally responsive teaching isn’t a specific set of strategies to be used within classrooms. So, then, how is it achieved? Culturally responsive teaching is a shift in mindset that motivates how we plan for every aspect of learning and overall classroom experiences. It is student-centered and focuses on high achievement for all learners. Culturally responsive classrooms can increase student engagement, a student’s sense of belonging, and academic achievement.

Highlighting Student Experiences

The classroom becomes enriched for everyone when students are looked at through the lens of assets and not deficits. For example, when students are raised in rural agricultural communities, they likely have a deep knowledge of the natural world and its many interactions. These students are assets in the classroom because they may provide a unique perspective that can be leveraged as they and their peers are learning about agriculture, ecology, earth science, and biology.

An example of student diversity enriching our classroom occurred during a lesson about invasive species (introduced species that cause harm to the environment and/or human populations). Knowing that two of our students were from Uganda, we chose to teach about the harm of the Nile perch in Lake Victoria. Prior to the lesson, we met with both students and their parents to learn why the British government decided to introduce Nile perch to the lake. The history of this case study differs greatly depending on who tells the story. The ecologists and biologists explain that it was an ineffective solution because they knew that Nile perch would overpopulate and destroy the lake’s ecological balance. The government officials justify their decision by explaining that the lake had been overfished and the only way to avoid an economic depression was to populate the lake with a large, fast-reproducing fish species that would support the fishermen and their families.

Neither of the families made their living through fishing, but both had family members or friends who fished commercially. Through these discussions, we were able to document both sides of history, which were then presented to our students. After listening to the audio tapes (while also reading the manuscripts), students participated in a debate. Half of the class posed as scientists and the other half as government officials who were responsible for their country’s economy.

By knowing about our students and honoring their unique experiences and cultural differences, all of our students benefit. Student uniqueness is an asset and never a deficit.

Highlighting Student Interests

When the Flint, Mich., water crisis first surfaced in the news, many of our students had questions about how such a crisis could happen in the United States.

We designed a biology unit examining the lead contamination in Flint, not simply as a case study of how lead affects children but also as a study of how society and science are connected. We began by providing students with a glance at the cultural and economic makeup of Flint. Forty percent of the population was living below the poverty line, and 57 percent of the residents were African American.

Then we defined “environmental racism,” which is a term that was coined in the 1970s that refers to environmental injustices that harm people of color.

To help students understand the connection between society and science and to provide an example of how “environmental racism” exists, we provided them with two articles: one written by a local Flint resident and another written by a Flint politician.

Although the two authors told a story about the same event, they had two very different perspectives regarding the safety of the water today. Local residents insisted their water was not lead-free, but the politicians resolved that the contamination has been corrected and the water is safe to drink.

When presenting a story to students, it’s important that they don’t receive the subtle message that both sides are equal. To avoid this perception of equality, we led a class discussion about who had the power in this case study: the politicians or the residents? Then we discussed the impacts of the pollution, asking how the residents were affected and how the politicians were affected.

Students then debated if the residents should trust the politicians’ message that the water could be safely consumed.

Highlighting Student Voices

Students are encouraged to participate in discourse every day in the science classroom in a variety of ways, such as discussing their personal experiences and backgrounds, planning and executing scientific experiments and outcomes, debating hot topics within a field of science, and many more. Through these activities, diverse opinions emerge, which allow for students to increase their understanding of each other and different backgrounds.

Another way to build this community of learners is through cooperative learning (e.g., jigsaw, think-pair-share, and round robin). Cooperative learning lends itself to what is known as the contact hypothesis. The contact hypothesis centers around the idea that prejudices are naturally reduced when diverse groups of people are required to work together. Thus, by creating diverse groups of students within our classroom, students are being exposed to other cultures and learning from each other. This can break down the prejudices that occur in order to solidify a classroom of respect and acceptance so that all learners feel supported and safe.

Another way to build a community of respect is by honoring the beliefs of all students and cultures. For example, in some Native American cultures, students are not permitted to be present for dissections. In order to create an environment that is accepting and respectful of this belief, we find a safe space for them to go and work during this time. We also invite them to teach other students about the history and basis of their traditions. We can make these kinds of modifications in advance because we make an effort to know our students and their backgrounds.

Culturally responsive classrooms shift the focus away from the teacher and onto the students. When students can relate to the content while sharing their experiences with others, they can feel respected and safe. These positive feelings can increase student engagement and offer all students social and cognitive benefits.

culturallywhiteanddaile

‘Funds of knowledge’

Anthony Nesbit began his teaching career in Seville, Spain, teaching English. He has taught Spanish and English to speakers of other languages for more than 20 years. He holds a BA in Spanish and an MA in TESOL. Currently, he teaches English-learners in grades K-12:

One of my favorite books is Seedfolks, by Paul Fleischman. The book is a frame story about a community garden created out of a vacant lot by a group of immigrants in Cleveland. Each person brings just a little bit from his or her culture to make the garden unique and special. My favorite chapter in that book is titled, “Gonzalo.” In it, Gonzalo, who is caring for his “tío Juan’’ (a recent arrival from Guatemala), discovers that his uncle is a master gardener. Gonzalo treated him “like a baby.” He often said that he doesn’t know English and gets lost in the city. But, in the garden, Gonzalo’s uncle can show his knowledge.

Perhaps, if science educators incorporated more of the students’ funds of knowledge into the science curriculum, science would be more culturally responsive. Just as tío Juan found himself at home in the garden, our students might find themselves more at home if science teachers incorporated more of the background knowledge that their diverse students bring to the science class. For recently arrived students, this could include things such as geographical references or pictures and names of species of plants and animals endemic to students’ native countries. I will never forget the excitement of one of my students recognizing and describing the blossoms and fruit of the cacao tree in the interlanguage of English and Spanish. I think this excitement and later engagement happened because of the relevant example of the cacao blossom that was incorporated into the explanation of the life cycle of a plant.

Additionally, students need to see themselves as scientists to make science more culturally responsive. If educators seek out diverse science role models, this may help break down barriers and beliefs that students from marginalized backgrounds can’t do science. The internet is a great resource for connecting with scientists from all backgrounds. The site: skypeascientist.com, matches minority scientists with minority-dominated classrooms to give students role models that “look like them” or come from a similar income group.

Finally, making science more culturally responsive is going to involve a larger systemic change in the way science educators assess students. Too much of science knowledge is based on “just the facts.” Until science educators have a system that evaluates science knowledge based on what students can create using science, rather than just the facts they know, then the ability of a large portion of underrepresented students to do science will go unrecognized.

ifsciencenesbit

Thanks to Autumn, Tara, Mandi, and Anthony for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at lferlazzo@epe.org. When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo.

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching.

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

I am also creating a Twitter list including all contributors to this column.

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Events

Artificial Intelligence K-12 Essentials Forum Big AI Questions for Schools. How They Should Respond 
Join this free virtual event to unpack some of the big questions around the use of AI in K-12 education.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School & District Management Webinar
Harnessing AI to Address Chronic Absenteeism in Schools
Learn how AI can help your district improve student attendance and boost academic outcomes.
Content provided by Panorama Education
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Science Webinar
Spark Minds, Reignite Students & Teachers: STEM’s Role in Supporting Presence and Engagement
Is your district struggling with chronic absenteeism? Discover how STEM can reignite students' and teachers' passion for learning.
Content provided by Project Lead The Way

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science Reading and Writing Like a Scientist
English and science teachers in Missouri middle schools collaborate to help students tackle complex scientific texts.
6 min read
Illustration of magnet attracting letters.
Dan Page for Education Week
Science One Change That Can Get More Girls, Students of Color Taking Computer Science
Making computer science classes a graduation requirement can be a powerful strategy.
5 min read
Two teen girls, one is a person of color and the other is white, building something in a science robotics class.
iStock/Getty
Science A Marine Science Program in a Surprising Place Shows Students New Career Options
It's hard to find teachers for STEM subjects, but a school system in a landlocked state has found a way to make it work with marine science.
5 min read
Nolden Grohe, 16, feeds exotic fish during Marine Biology class at Central Campus in Des Moines, Iowa, on Sept. 27, 2024.
Nolden Grohe, 16, feeds exotic fish during Marine Biology class at Central Campus in Des Moines, Iowa, on Sept. 27, 2024. The Iowa school system has had a hands-on program for three decades that has introduced students to career possibilities in aquarium science, marine biology, and related fields.
Rachel Mummey for Education Week
Science The Biggest Barriers to STEM Education, According to Educators
Educators share the challenges schools face in teaching STEM.
1 min read
Photograph of a diverse group of elementary school kids, with a white male teacher, working on a robot design in the classroom
E+